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The hydrodynamic stabil i ty of p lasma in a cor rugated  magnet ic  field is  considered.  A s ta-  
bility c r i t e r ion  is  establ ished for  flute osci l lat ions;  it  i s  valid for  a r b i t r a r y  valuos of/3 = 
8 r p / B  z. In a fa i r ly  long sys tem unstable flute per turbat ions  with a wavelength much g rea te r  
that the per iod of corrugat ion always exist .  The equations of motion a re  solved for  these 
mos t  dangerous per turbat ions ,  and the instabi l i ty  inc rements  a re  der ived for  the case of an 
ideal p lasma and also with due allowance for  viscosi ty.  The v iscos i ty  is  considerable  for  
large/3 and may lead to a reduction by a factor  of N r in the increments .  

1 .  I n t r o d u c t i o n  

A method of containing dense plasma in a cor rugated  magnetic field was proposed in various e a r l i e r  
papers  [1, 2]. The authors  in question showed that the escape of plasma in the longitudinal direct ion was 
great ly  r e t a rded  under  conditions in which the f ree  range of the par t ic les  was much sma l l e r  than the di-  
mensions of the apparatus.  If the plasma were  contained in the radial  direct ion by a conducting wall and 
not by the magnetic field, the corrugat ion was in n o way broken down even when the gaskinet ic  p r e s su re  of 
the p lasma p grea t ly  exceeded the p r e s s u r e  of the magnet ic  field B2/87r. 

The question a r i s e s  as to the stabil i ty of dense plasma in such a sys tem.  In this paper  we shall con- 
s ider  the problem on the hydrodynamic approximation.  

Let  us take a cylipArical coordinate sys tem (r,0, z) with the z axis d i rec ted  along the axis of the sys -  
tem; the magnetic  field B has components B r and B z which constitute per iodic  functions of z with a p e r i o d  
l equal to the distance between adjacent m i r r o r s .  We place the origin at a field maximum (at a mi r ro r ) . .  

It is  well known [3, 4] that  the l inear ized  equations of the natural oscil lat ions of an ideal p lasma r e -  
duce to a single differential  equation for the displacement  } of the p lasma f rom the equi l ibr ium position 

y-~2p~=V (~Vp + 7p div ~) -b Ti [rot B, rot [~B]] F ~ [ ro t  rot [~BI,BI~--(I~). (1.1) 

Here  w is the natural  frequency; Y is the adiabatic index; p, p, B a re  the equil ibr ium values of the density, 
p r e s su re ,  and magnetic  field. We shall consider  that the plasma is  surrounded by a conducting shell so 
that the boundary conditions for  ~ a re  as follows: normal  component  of the displacement  zero  on the la t -  
e ra l  sur faces  and ~ ][ = 0 at  the ends. 

The unper turbed values of the p r e s s u r e  and magnetic f ield a re  re la ted  by the equil ibr ium equation 

v p  = Irot  B; Bl. (1.2) 

In view of the self-conjugat ion of Eqs. (1.1), these may  be studied by the energy method [3, 5]. The 
question of stabil i ty then reduces  to finding the sign of the potential  energy  W fo r  smal l  oscil lat ions,  

W:-~-2 j ~)2 (~vP)d iv~+ [~B])2--~-~ (rot l~B]) [~ rot B] 
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The ratio of the maximum radius of the sys tem rma  x to the distance between m i r r o r s  l is regarded 
as small.  This enables us to find all the quantities charac te r iz ing  the magnetic  field and to solve the equa- 
tions of the oscil lat ions by means  of an expansion in t e rms  of this small  pa ramete r .  

In the sys tem (with a large  number  of m i r r o r s )  under considerat ion,  we may expect to find "a l -  
most"  flute osci l lat ions having a wavelength grea t ly  exceeding the period of the corrugat ion l. These os -  
cillations may be unstable even on satisfying the cr i ter ion of convective stability. 

F o r  these ve ry  dangerous per turbat ions  (although we may note that they a re  of a smal l - sca le  nature 
in relat ion to azimuth) we have now solved the equations of motion and found the instabili ty increments ,  
both for an ideal p lasma and for  one in which viscosi ty  effects have to be considered, as will now be ex- 
plained. 

2. C o n s i d e r a t i o n  o f  t h e  G e o m e t r y  o f  t h e  C o r r u g a t e d  

M a g n e t i c  F i e l d  

We introduce a surface coordinate sys tem (0, @, s) with the me t r i c  

dO 2 
(dr) "z = r2dO" + ha2ds~ + ( ' 7 ~ '  

where 0 is the azimuth, s is reckoned along the magnetic field, so that the element of length in a magnetic 
line of force equals 

B r B z 
5l = hsds = --g- dr + - f f  dz, (2.1) 

in which on the axis of the sys tem h s = 1, s = z ;  27r~ is the magnetic  flux in a tube of force  bounded by the 
specified magnet ic  surface,  

r 
q9 =-.~Bz rdr. (2.2) 

0 

The eqtfi.librium equation (1.2) in the var iables  ~, s takes the form 

dp t B 0 (Bh~) 
dO --  4a h.~ O(D 

(the p r e s s u r e  is constant on the magnetic surface and depends solely on ~). 

We may also note the equation a r i s ing  f rom the condition that ds (2.1) should be a complete di f fer-  
ential: 

- -  B Oh, o~z 
= 7 = ~'" (2.3) 

Here  tg a = B r / B  z = (Sr/0z)~b , • is  the (alternating) curvature  of the magnetic line of force.  

In any specific calculations it is  never theless  more  convenient to use not the var iables  6,  s but the 
quantities r0(r and z, where r 0 is  the minimum radius of the specified magnetic surface  (in the region of 
the mi r ro r ) .  ']?he f i rs t  t e r m s  in the expansion of Bz and p in powers of  r 0 take the following form (in the 
expansion, with respec t  to r0, it is  always understood that r m a x / l  << 1): 

B0 Bz = ~ (1 + b (z) r~) 

B02 
P = Po + ~ "  aro', 

where f(0) = rain f= 1. If we use B m to denote the magnetic field in the m i r r o r  (z = 0), 

Bm= Bo(t + b (0) r0~), 

the magnet ic  flux will be equal to 

ro 
(I) = .[ B., (r') r'dr' 

0 

A comparison between Eqs. (2.2) and (2.4) enables us to find the f i r s t  t e r m s  in the expansion, 

b (0) -- b 91 
r =  V T r o [ t  + - - - y i - - - r o ' ] ,  

(2.4) 
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and then 

B,  = B= tg ~ ~ ~ a o ~ o ~  (1)-~ 

(the dot s ignif ies  a der iva t ive  with r e s p e c t  to z). 

We consider  that the magnet ic  field on the axis  of the sy s t em B0/f(z) and the dependence of the p r e s -  
sure  p on r 0 a r e  a l r eady  known. The expansions  of the remain ing  quantif ies a r e  then de te rmined  by means  
of the equi l ibr ium equation, which in the v a r i a b l e s  r0, z m a y  be reduced  to the fo rm 

'C) 
dr o 8~ - ~ o  z "{- " - ~  \ Oz Jr." 

If in this we i n s e r t  the exp res s ions  for  r ,  Bz, Br,  Bin, we obtain 

a/2 /2 (*~i b =  
2 4 , ' 

af te r  which the r emain ing  quanti t ies  m a y  be de te rmined .  

Let  us calculate  a few m o r e  quanti t ies  which will subsequently be requ i red  to the n e c e s s a r y  accuracy :  

u = - - ~  ~- .~ . z  (,o, :) ~ E . [  [ t  - b (~) ,.o ~] d~. = <I> + ~ [(<I~> + ~- <.~> , 
0 . O 0 

(2.5) 

l h ds 1 

UI = .i ~ ~ -- <P>" 0 B3 B03 
(2.6) 

C o n s i d e r a t i o n  o f  t h e  S t a b i l i t y  of  t h e  F l u t e  3 ,  

O s c i l l a t i o n s  

The potent ial  energy  of the osci l la t ions  (1.3) m a y  be wri t ten in the following fo rm in the va r i ab l e s  

O, S, ~: 

4~ [rh~O~ l + ~ -L  h'-'~-;--I + 

a~ [a~3+4~@~ 3+ + 2 0h 
+ ~ LO-~ B ~ dO rOO] 

where  =3 r B  ~ , = ~r ~r t0, ~ li a r e  the d i sp lacements  along the normal  to the magnet ic  sur face ,  along the az i -  
muth, and along the numer ica l  line of the unper turbed  magnet ic  field, r e spec t ive ly .  

In the integrand of the expres s ion  for  the potential  ene rgy  only the l a s t  t e r m  is  destabi l izing.  I f  the 
p l a sma  p r e s s u r e  fa i ls  toward the outside dp/dO <0, i t  follows f rom Eq. (2.3) that  this t e r m  i s  negat ive in 
the region in which a e / h s 0 s  < 0, i .e . ,  where  the magnet ic  l ines of fo rce  a r e  convex outward. 

Thus,  ins tabi l i ty  a r i s e s  as a r e su l t  of the exis tence  of regions  with an unfavorable  curva tu re  of the 
magnet ic  field - a s i tuat ion analogous to the case  of a sha rp  p l a s m a - m a g n e t i c  f ield boundary [3]. 

By vi r tue  of the axial  s y m m e t r y  of the s y s t e m  we take the azimuthal  dependence in the fo rm 

~ r  s) cos mO, ~o=~o((1),s,) sin m0, ~u =~:.(O, s) cos mO. 

Let  us confine ou r se lves  to cons ider ing  the az imuthal ly  s m a l l - s c a l e  natural  osci l la t ions  such that  
m--* % but m~0 is finite. As indicated e a r l i e r  [5], the potential  energy  W 1 for  such per tu rba t ions  fal ls  to 
a minimum:  In Eq. (3.1) the th i rd  t e r m  vanishes ,  while the sum of the f i r s t  and fourth e x p r e s s e d  as  a 
function of dive0 p a s s e s  through a minimum:  

= T v p ( l + ~ j  ~ .-~.~' +~[rh~O~_l +2~h-~-7~,o, V W1 

l The "kinetic energy"  Q = ~ f PIBI2dV of such per tu rba t ions  is  a lso  min ima l  (since ~0 -'~ 0), and in the case  

of ins tabi l i ty  (Wt < 0) they acqui re  the m a x i m u m  i n c r e m e n t  y2 = _{Wl/Q)" 
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Thus, osc i l la t ions  with m - -  r a r e  the m o s t  dangerous in the s y s t e m  under  considerat ion.  

If  we c a r r y  out a fu r the r  min imiza t ion  of Eq. (3.2) with r e spec t  to div~l [ allowing for  the additional 
condition ~|l = 0 at  the ends,  we m a y  obtain the following s tabi l i ty  c r i t e r ion  for  flute per tu rba t ions  constant  
a long the li~e of fo rce  0~3/0s = 0 [5]: 

Using Eqs.  (2.5) and (2.6), f o r  U and U 1 to an accu racy  of t e r m s  of the o rde r  of r 0 we find 

dU 4 n  U 1 dp .~  3lr 0 " (12} > 0, (3.4) 
dro dro 

i .e . ,  the f i r s t  b racke t  in Eq. (3.3) is  a lways  posi t ive (considerat ion of the next t e r m s  of the expansion 
shows that  the quantity (dU/dr  0) - 4 v U i ( d p / d r  0) i s  posi t ive  for  p r e s s u r e  drops  pe rmi t t ed  by the equi l ibr ium 
equation lAp/p[ ~ 1 /~) .  Thus, in the axia l ly  s y m m e t r i c a l  s y s t e m  the magnet ic  depress ion  (dU/dr  0 < 0) c r e -  
a ted as  a r e su l t  of the p r e s s u r e  gradient  does not s tabi l ize  flute per turba t ions .  

Allowing for  condition (3.4), the s tabi l i ty  c r i t e r ion  (3.3) t akes  the fo rm 

?p ~ + U > 0. (3.5) 

Substituting the values  of all  the quant i t ies  found in 2, we obtain 

2 -I  --a < ~ (~2>((]a> + -~0 (]}) 
or, to the s ame  accuracy, 

dlnro ~ - ' ~ o  ~'~ ~ . 2  -t ,  

where  to = 8~rPo< Bo 2- 

In the case  of l a rge  f~ c r i t e r ion  (3.5) r educes  to the condition dU/dro> 0 

dlnp 3r re2 
- -  d--YS-7o < <--]~ - ~0" (3.7) 

If the magne t i c  s topper  (mi r ro r )  ra t io  R is s u c h t h a t R - 1  ~ 1, we have (~2} ~ 1/12, and the c r i t e r ion  
of convect ive s tabi l i ty  for  a dense p l a s m a  (fl >> 1) takes  the fo rm 

dln p ~ A t r02 
d In r 0 ~ ~ ' 

where  A is  a coeff icient  of the o r d e r  of unity. 

4 .  I n s t a b i l i t y  o f  L o n g - W a v e  P e r t u r b a t i o n s .  

S t a b i l i z a t i o n  by  t h e  E n d s  

As a l r eady  indicated in w 3, in the s y s t e m  under  considerat ion the az imuthal ly  s m a l l - s c a l e  o sc i l -  
lat ions with a potential  ene rgy  W 1 a r e  the m o s t  dangerous  - see Eq. (3.2). In o rde r  to find the d i spers ion  
re la t ions  we turn to the equations of motion,  which for  these  osci l la t ions reduce to the f o r m  

---  O)~P~a - -  4 x  h 0.; ~ rUB h.fls ] - -  2r2B~" ~ ? P  div ~ n + 2 ~ ~3) t + /,-Fr ] + ~-~ ~3 

--~o~p~ = ~  yp diV~l + 2 ~ "  t +  . (4.1) 

Let  us take the d ivergence  of both s ides of the second equation [div ~ [[ = ( B / h  s) �9 (~/Os)(~ [[/B)] and 
ins tead of the function div ~ ~ introduce the new unknown 
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In addition to this,  we t r a n s f o r m  f rom the va r i ab l e s  @, s to the va r i ab l e s  r0, z and make  use  of Eq. (2.3). 
The equations of mot ion (4.1) then take the fo rm 

8hs 4 z~Tp ~ - I 

--o) B~ z ~ =  Bo a oz [r-~-~B~-zJ + Y ]~o~B,, rodr o ~ " (4.3) 

This  is  a s y s t e m  of equations for  y and ~3 with coeff icients  per iodic  in z. The solution m a y  the re fo re  be 
sought in the f o r m  

~3=A(ro)Bov(ro, z)e ih~, y=A(ro)u(ro, z)e i~, 

where u and v a r e  per iodic  functions of z with a per iod l. The sy s t em (4.2), (4.3) is  solved by expanding 
all the quant i t ies  in powers  of r 0 (we confine ou r se lves  to t e r m s  of the second order) .  

Compar i son  of the posi t ive second and des tabi l iz ing th i rd  t e r m s  in Eq. (3.2) for  the potential  energy  
shows that  the wave num ber  is  a quanti ty of no lower  than the f i r s t  o r d e r  in %, while the t e r m  0f ze ro  o r -  
der  in the expansion of the function v is  independent of z (osci l la t ions for  which ~3 is  a l m o s t  constant  along 
the line of fo rce  a re ,  of course ,  chosen). F u r t h e r m o r e ,  i f  in (4.3) we compare  the lef t -hand side and the 
l a s t  t e r m  on the r ight -hand side, we see  that the square  of the f requency w 2 is  a quantity of the second o r -  
de r  of sma l lnes s  in r 0. 

Thus, the expansions of the functions v and u take the f o r m  

v = l + v l i v ~ +  . . . .  u=uo§247  

In Eq. (4.2) the t e r m s  of ze ro  o r d e r  yield the following (all the quant i t ies  cha rac te r i z ing  the magne t ic  field 
were  found in w 2): 

(~ duo'/= o 

and it  follows f rom the condition of per iod ic i ty  %((h0) = 0) that  u 0 = eonst.  The t e r m s  of f i r s t  o rde r  in r 0 
take t h e  f o r m  

Once again, because of the per iodic i ty  of ul, we tind 

d%d_._~ = ikuo(i,  i , - i _ _ t )  " i  ,, 

In an analogous way the per iod ic i ty  of the function u 2 enables  us to find 

3 ( o  2 [ r  2 ,  I - i ,  (4.4) 
u8 = - -  ~ < i " )  .:)~ + ~ \  

\ ! / J  
where  CA 2 = B02/47rp. 

In Eq. (4.3) the t e r m s  of f i r s t  o r d e r  give v 1 = const,  and the t e r m s  of second o r d e r  take the f o r m  

o)~ d*v,z ~ tO2 d 2 
( - -  kS + dz~ ] + 2 ~-~-~z~ (W?) (uo + a). 

c 2 

Substituting the u 0 of (4.4) in this equation, mult iplying both s ides by f2, and averag ing  with r e s p e c t  to z, 
we obtain a d i spers ion  equation for  the na tura l  osci l la t ions:  

3 "., �9 ~2 r e ~  / ' i s  2 "x  " -~ .  
:l=xk"+~-<f2)ar~ ~ ' " lea \,-'FjA 

F o r  k = 0  the condition w2> 0 coincides with condition (3.7) for  the s tabi l i ty  of t h e  flute per turba t ions .  
Equation (4.5) is  quadrat ic  in the quantity w2/c2 A and has two pos i t ive  roots  subjec t  to the condition 

3 ~ \ ~  d l n p  J k  2, 
4 \ J /  
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Thus, i f  the p r e s s u r e  i n c r e a s e s  toward  the outside, the p l a s m a  is  s table.  

If, however ,  the p r e s s u r e  fai ls  toward  the pe r iphery ,  then for  

2 3 a dlnp 
k~<ko  - - - - - ~ -  ( /~)  (4.6) ~'o d - ~  ~ 

one of the roolLs of Eq. (4.5) i s  negat ive,  which impl ies  instabi l i ty .  

In a s y s t e m  bounded by conducting ends,  in view of the boundary condition a t  the ends, the values  of 
the wave numb er s  a r e  l imi ted  f r o m  below by the quantity Kmin ~ l r /Nl .  Hence, on sat is fying the condition 

dlnp ~.(~)2 43 <:~> ~o ~ - ~ (4.7) 

the system wi]LI be stable (stabilizing effect of the conducting ends, see [4]). 

If the plasma is stable in relation to flute perturbations, i.e., if inequality (3.6) is satisfied, the con- 
dition for stabilization by the ends takes the form 

. u  n l for. ~ > 1 ,  
(/s> Ir ~ ro 

. u  n i l for ~ i .  

Let  us now cons ider  the case  in which the p r e s s u r e  fails  m o r e  sharp ly  than in (3.6). The m a x i m u m  change 
of p r e s s u r e  in the case  of l a rge  fl lAp/p[ ~ 1/fl, while in the case  of smal l  fl IAp/pl ~ 1. 

Condition (4.7) then t akes  the f o r m  

l <]~) t/2 

2~ l 
N ~ 3/(80 <~.>)t/':. ~ for ~ ~ I. 

Since for  the longitudinal conta inment  of the p l a s m a  a l a rge  number  of m i r r o r s  (magnetic p l a s m a -  
containing segments )  i s  r equ i red  [1, 2], in h i g h - p r e s s u r e  p l a s m a  (8 >> 1) the re  i s  no s tabi l izat ion by the 
ends.  

The " f rozen"  nature  of the l ines of  fo rce  at the conducting ends i s  the only s tabi l iz ing effect.  If  con- 
dition (4.7) i s  not sat isf ied,  the p l a s m a  in the cor ruga ted  f ield is  a lways unstable for  a fal l ing p r e s s u r e .  
The instabili t 'y i n c r e m e n t  vanishes  when k = k  0 (4.6) and if the flute per tu rba t ions  a r e  stable (3.6), when 
k = 0 .  

Analys is  of the d i spe r s ion  equation (4.5) shows that  on sat is fying the condition 

dlnp I.~<]2>ro~(/3 + 2 /)-i[l +<]2) 12(:'! ..... ./,s 2 .... I-I ] (4.8) 

coinciding in o r d e r  of magni tude with condition (3.7), the m a x i m u m  inc remen t  is  r eached  for  a kext r  in the 
in te rva l  0 < k e x t r < k  o (the exact  express ion  for  kex t r  i s  r a t h e r  cumbersome) .  The m a x i m u m  inc remen t  for  
fl >> 1 equals  

___i cr ~ Idlnp l ~ cA r 0 (4.9) 

If the p r e s s u r e  fa i ls  m o r e  sharp ly  than in (4.8), the m a x i m u m  inc remen t  is that  of flute osci l la t ions 
with k = 0 (or fo r  a finite sys t em,  with kmin  ~ v /Nl ) :  

i ca[3l~<]%(R,dln p 
v (k = o, ~ >> ~) = ~- ~ [<-7:- k ~~ I~ ~-r~-~o <:> " 

If the p r e s s u r e  gradient  i s  much g r e a t e r  than the c r i t i ca l  (4.8), the m a x i m u m  inc remen t  equals  

(4.10) 

27 



5. C o n s i d e r a t i o n  o f  t h e  E f f e c t  o f  V i s c o u s  F r i c t i o n a l  

F o r c e s  on  t h e  O s c i l l a t i o n s  o f  H i g h - P r e s s u r e  P l a s m a  (B >> 1) 

Regard ing  the p l a s m a  as  magnet ized ,  in the equation of motion we consider  only the longitudinal ionic 
v iscos i ty .  Then the equation of the osci l la t ions (1.1) t akes  the f o r m  

- -  o ) ' ~ p ~  - F  O~l~ , , 

where the v iscous  tension t en s o r  equals [6] n ~  ~ 3ioq o (h~h~--  1/3 8~  ) 

(5.1) 

(h (hv)  g - 1 / 3 d i v ~  ) �9 H e r e h i s t h e  

unit vec to r  in the d i rec t ion of the magne t ic  field; To=P/V[ i s  the v i scos i ty  of the ions; vi i s  the ionic f r e -  
quency of Coulomb col l is ions.  

Let  us fu r the r  a s s um e  that the ine r t i a l  t e r m s  m a y  be neglected by compar i son  with the v iscous  t e r m s .  
This  is  valid on the condition that 

where  Yi is  the ins tabi l i ty  i n c r e m e n t  fo r  an ideal  p l a sma ,  and ~/v is  the i n c r e m e n t  calculated while neg lec t -  
ing the iner t ia l  t e r m s .  

Af ter  mult iplying both s ides  of Eq. (5.1) in the s c a l a r  manne r  by ~ and in tegra t ing  over  the volume,  
we obtain 

--~.- io} ~ llo \ ~sOs + d~ II Ohs~ ~8 - - -g -  div ~ 1  )2 dV = W ,  (5.2) 

where  W is  the potential  energy  of the osci l la t ions  as  in (1.3). I t  follows f rom (5.2) that  al l  conclusions 
regard ing  stabi l i ty  drawn e a r l i e r  r em a i n  valid on making  al lowance for  v i scos i ty .  If t he re  i s  any subs tan-  
t ial  v i scous  fr ict ion,  this only r e su l t s  in a reduced ins tabi l i ty  inc rement .  

As in the case  of ideal  p l a s m a ,  the m a x i m u m  inc remen t  occurs  fo r  osci l la t ions with a l a rge  az imutha l  
number  m---r In the l imi t  of l a r g e / t  these  a r e  i ncompres s ib l e  (divf =0). Equation (5.2) then takes  the 
f o r m  

3 . _. [ O~ll Oh s \2 hflsdfil 
T 7 - z -  = w l  (5.3) 

W 1 being given in Eq. (3.2), while the equations fo r  the osc i l la t ions  m a y  be wri t ten  in the following way: 

_ 

(here  we have r e m e m b e r e d  the condi t ion ~l >> 1). 

- Once again we seek  a solution in the c l a s s  of pe r tu rba t ions  such that  the quantity ~a is a lmos t  con-  
stant along the line of fo rce ,  

~3 = A(ro)Boeik~ (i + v t + v~ + . . . ) .  

It  follows f r o m  Eq. (5.3) that  the i n c r e m e n t  y =  - i ~  is  a quantity of the second or  zero th  o rde r  in r 0. 

In the f i r s t  case  the expansion of ~ ~ s t a r t s  with the m i n u s - f i r s t  o r d e r  in r0, 

~U = A (ro) e ikz(~-i  + ~o + . . . ) .  

The d i spe r s ion  equation is  obtained f r o m  Eqs.  (5.4) in the s a m e  way as  that  i l l u s t r a t ed  in w 4: 

2 vl vi ( -~3 \'/i'2\~/vo d lnp  3 <~z> t, Od__i~o] j . (5.5) 

",, 1 :  / 

. . . . . . .  If the f lu te -per tu rba t ion  s tabi l i ty  c r i t e r ion  (3.6) is  sa t is f ied,  the i n c r e m e n t  (5.5) i s  posi t ive in the 
w a v e - n u m b e r  range 
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and reaches  a m a x i m u m  

0 < k~ < k0 ~ -- ~ <~> ~0 ~ ~- - -  4 d i n  r o 

dlnp[ ~ vi rr 
~ ~ .. 1 -7~1  ~ T 7 (5 6 )  

Compar i son  between the ~viscous ~ i n c r e m e n t  (5.6) and the i n c r e m e n t  (4.9) for  an ideal  p l a s m a  shows 
that  the v i s c o s i t y  i s  impor t an t  i f  

i ~ 1@ ~ ,  (5.7) 

where k is the free range of the particles. 

If condition (3.6) is not satisfied, it follows from (5.5) that instability will develop for wave numbers 

3 "z ( dlnp 3<fl'>ro~)~k~<kS<ko2" 

However ,  c lose to k 1 Eq. (5.5) i s  inappl icable  (the denominator  vanishes) .  Success ive  al lowance for  the 
next  t e r m s  of the expansion in Eqs.  (5.4) shows that  for  k =k~ the i n c r e m e n t  vanishes ,  while close to k~ 
the re  i s  a s h a r p  m a x i m u m  

"r 
~ -~k~l. 

F o r  l a rge  p r e s s u r e  g rad ien t s  

Let  us now cons ider  the case  in which the i n c r e m e n t  3 / i s  a quanti ty of ze ro  o rde r  in r 0. The expan-  
sion of ~ ~ then s t a r t s  f r o m  the ze ro  o rde r ,  

~ll = A(ro)e ~k: (~o + ~I+-..). 

The s y s t e m  of ,equations (5.4) may  then be reduced  to the following fo rm (only the pr inc ipa l  t e r m s  being 
lef t  intact):  

3 ioJ 1 d[ r 2 dS ] 
2 ,,~ f~o-y7-: /'~o--/3i~(/'2)" ~ - d~ L/S ~ (7~o)-- :,,--~dz~(/':2) , (5.8) 

z3 ~o,,, vo,a 13:. ~: (/,:2) o _/~2 (/~:2) = ~ (_ + ':2) + 

+p:2,:,.io.{l~o .,n. ~[+. 1} v :') r~ ~ ~,~ r~ + -~ ~ q~0)-- 2 / ' : ~  (/'~) 

The s y s t e m  (5.8) can only be solved if  we fu r the r  a s sume  that  R - 1  is sma l l  (condition o f w e a k c o r -  
rugation).  The d i spe r s ion  equation takes  the f o r m  

~ i C o ~  2 vl 1 [ 3 /~2\g dlnp 9 1 T[p'-"o ro2/',~[dZ/t':2~ L---T\'/VOTFa-7o ~ (/~),r2 k 2J. (5.9) 

The i n c r e m e n t  (5.9) i s pos i t ive  fo r  the wave number s  

k 2 < ki 2 

and only on the condition that  the flute pe r tu rba t ions  a r e  unstable (k= 0). These  do not pos se s s  the m a x i -  
m u m  inc rement .  

F o r  la rge  p r e s s u r e  grad ien ts  g rea t ly  exceeding the value (3.7) the ins tabi l i ty  i n c r e m e n t  equals 

l s Idln pl V{. l e (5.10) 
T r~ax 

Compar i son  of the i n c r e m e n t  (5.10) with the analogous express ion  (4.10) for  the ideal  p l a s m a  shows that  
in this  case  the v i scos i ty  i s  impor t an t  i f  
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~,r2max 
t < V~ 7 - .  (5.115 

Thus, in a high-pressure plasma (fl >> 15 viscosity may play a significant part. It follows from the 
conditions (5.7) and (5.11) that at the boundaries of applicability of our present approximation (rma x ~ l) 
and the hydrodynamic approximation (•~ l) the effects of viscous friction lead to a reduction in the insta- 
bility increment by a factor of B ~ ~fl t imes as compared with the case of an ideal plasma. 

A comparison between the character is t ic  time of instability development A/7 CA is the Coulomb log- 
arithm) and the time of longitudinal plasma expansion [1, 2] T~ ~ N2/vi shows that subject to the condition 
fl > N2/A the time of plasma containment is determined by the lat ter  and not the former .  

In conclusion, the author wishes to thank D. D. Ryutov for presenting the problem and for constant 
in teres t  in the work, and V. D. Shafranov for useful discussions and a number of valuable comments. 
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