HYDRODYNAMIC STABILITY OF DENSE PLASMA
IN A CORRUGATED MAGNETIC FIELD

M. D. Spektor UDC 533.951.8

The hydrodynamic stability of plasma in a corrugated magnetic field is considered. A sta-
bility criterion is established for flute oscillations; it is valid for arbitrary values of 8=
8rp/ B2 In a fairly long system unstable flute perturbations with a wavelength much greater
that the period of corrugation always exist. The equations of motion are solved for these
most dangerous perturbations, and the instability increments are derived for the case of an
ideal plasma and also with due allowance for viscosity. The viscosity is considerable for
large 8 and may lead to a reduction by a factor of ~VB in the increments.

1. Introduction

A method of containing dense plasma, in a corrugated magnetic field was proposed in various earlier
papers [1, 2]. The authors in question showed that the escape of plasma in the longitudinal direction was
greatly retarded under conditions in which the free range of the particles was much smaller than the di-
mensions of the apparatus. If the plasma were contained in the radial direction by a conducting wall and
not by the magnetic field, the corrugation was in no way broken down even when the gaskinetic pressure of
the plasma p greatly exceeded the pressure of the magnetic field B2/ 8.

The question arises as to the stability of dense plasma in such g system. In this paper we shall con-
sider the problem on the hydrodynamic approximation.

Let us take a cylindrical coordinate system (r,8, z) with the z axis directed along the axis of the sys-
tem; the magnetic field B has components B and B, which constitute periodic functions of z with a period
1 equal to the distance between adjacent mirrors. We place the origin at a field ‘maximum (at a mirror).

It is well known {3, 4] that the linearized equations of the natural oscillations of an ideal plasma re-
duce to a single differential equation for the displacement ¢ of the plasma from the equilibrium position

—a?pE=v.(8yp - yp div E) + %c[mt B, rot [EB]]-~ %{rot rot [EB],Bl=—(R§). (L.1)

Here « is the natural frequency; v is the adiabatic index; p, p, B are the equilibrium values of the density,
pressure, and magnetic field. We shall consider that the plasma is surrounded by a conducting shell so
that the boundary conditions for £ are as follows: normal component of the displacement zero on the lat-
eral surfaces and §" =0 at the ends.

The unperturbed values of the pressure and magnetic field are related by the equilibrium equation
VP = ;- [rot B, B]. (1.2)

In view of the self-conjugation of Eqs. (1.1}, these may be studied by the energy method [3, 5]. The
question of stability then reduces to finding the sign of the potential energy W for small oscillations,

W= [V [yp@ivE? % (8vp)divs + - (rot [8B)? — 75~ (rot [§B)) [§rot B}}. (1.3)
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The ratio of the maximum radius of the system ry % to the distance between mirrors ! is regarded
as small. This enables us to find all the quantities characterizing the magnetic field and to solve the equa-
tions of the oscillations by means of an expansion in terms of this small parameter.

In the system (with a large number of mirrors) under consideration, we may expect to find "al=
most? flute oscillations having a wavelength greatly exceeding the period of the corrugation J. These os-
cillations may be unstable even on satisfying the criterion of convective stability.

For these very dangerous perturbations (although we may note that they are of a small-scale nature
in relation to azimuth) we have now solved the equations of motion and found the instability increments,
both for an ideal plasma and for one in which viscosity effects have to be considered, as will now be ex~
plained. :

2. Consideration of the Geometry of the Corrugated

Magnetic Field

We introduce a surface coordinate system (g, &, s) with the metric

5 5 a®?
(dr)? = r3d0* + hy’ds? + By

where g is the azimuth, s is reckoned along the magnetic field, so that the element of length in a magnetic
line of force equals

B B
0l = h ds = —BL dr 4 73; dz, {2.1)

in which on the axis of the system hg=1, s=z; 2r® is the magnetic flux in a tube of force bounded by the
specified magnetic surface,

,
® = (B, rdr. (2.2)
0

The equilibrium equation (1.2) in the variables ®, s takes the form

dp 1 B @
@ = — & T, o0 (Bhs)

(the pressure is constant on the magnetic surface and depends solely on &).

We may also note the equation arising from the condition that ds (2.1) should be a complete differ~
ential:

ahe [
—er—@;‘=x. (2.3)

Here tg @ =B,/ B, =(8r/8z)g, n is the (alternating) curvature of the magnetic line of force.

In any specific calculations it is nevertheless more convenient to use not the variables &, s but the
quantities ry(®) and z, where r; is the minimum radius of the specified magnetic surface (in the region of
the mirror). The first terms in the expansion of By and p in powers of ry take the following form (in the
expansion, with respect to ry, it is always understood that rp a5/ <« 1):

=B 14 b
Bz—‘f(z)‘;l'*"b(-')r().’

BO2 2
D= Pyt gr-arg,
where f(0) =min f=1. If we use By, to denote the magnetic field in the mirror (z =0),

Bn=By(1 +b(0)ro*),
the magnetic flux will be equal to

O = r[o B, (ryrdr. (2.4)
o

A comparison between Eqs. (2.2) and (2.4) enables us to find the first terms in the expansion,

r= V]Tro{i 4208 (OL—brO“)],
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and then
1 : )
B, =B, iga~x TBOrOf (H-32
(the dot signifies a derivative with respect to z).

We consider that the magnetic field on the axis of the system B,/ f(z) and the dependence of the pres-
sure p on ry are already known. The expansions of the remaining quantities are then determined by means
of the equilibrium equation, which in the variables ry, z may be reduced to the form

dp _ 1 (9B roB,, (aBT)
dro T 8n \ 0r )z+ 4ar \ 93 Jro®

If in this we insert the expressions for r, By, By, By, we obtain

after which the remaining quantities may be determined.

Let us calculate a few more quantities which will subsequently be required to the necessary accuracy:

l]l s l dz 1 _r,Z... 3 1
U= 5‘; B Eh B e d) 5[1—17(2)%] E{<f> + —fj—[a(f“)- + -2_<f2>J}, (2.5)
! h ds 1
:é‘ 5 . (2.6)

3. Consideration of the Stability of the Flute

Oscillations

The potential energy of the oscillations (1.3) may be written in the followmg form in the variables

8, s, ®:
| o)
1 e, 1[0, B r
W= 3 jdV yp (divE) +4—n'[m] + o W—]-‘-

B2 (a8 | 4m dp o4 oh
Tl g X g gﬂhaq,(?)} (3.1)

where E*=rBig; Eo, &, & are the displacements along the normal to the magnetic surface, along the azi-
muth, and along the numerical line of the unperturbed magnetic field, respectively.

In the integrand of the expression for the potential energy only the last term is destabilizing. If the
plasma pressure ﬁalls toward the outside dp/d® <0, it follows from Eq. (2.3) that this term is negative in
the region in which 80//hgds<0, i.e., where the magnetic lines of force are convex outward.

Thus, instability arises as a result of the existence of regions with an unfavorable curvature of the
magnetic field — a situation analogous to the case of a sharp plasma—magnetic field boundary [3].

By virtue of the axial symmetry of the system we take the azimuthal dependence in the form
Eo=Ea(D, 5) cos mB, Eg=Ep(®D,s,) sin mb, & =E-(D, s)cos mh.

Let us confine ourselves to considering the azimuthally small-scale natural oscillations such that
m— «, but m¢, is finite. As indicated earlier [5], the potential energy W; for such perturbations falls to
a minimum: In Eq. (3.1) the third term vanishes, while the sum of the first and fourth expressed as a
function of divé, passes through a minimum:

R, dsd® ( asyp\"Y( 4s ok o1t e }? Ok,
{vp (1 + ‘;‘;”) (dlvgu + zﬂhsacDgS) tim [rhsas} +255 7o (& 3)} ©.2)

W=t

The "kinetic energy™ Q = L)S p|&)?dV of such perturbations is also minimal (since £y= 0), and in the case

of instability (W; <0) they acquire the maximum increment y2=—=(W,/Q).
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Thus, oscillations with m—= « are the most dangerous in the system under consideration.

If we carry out a further minimization of Eq. (3.2) with respect to div §|| allowing for the additional
condition ¢ =0 at the ends, we may obtain the following stability criterion for flute perturbations constant
along the line of force 9£3/9s =0 [5]:

aU dp au dp’ (3.3
(E;:—'[.lﬂUlE)(Ypdro'{‘ Udro)>0. )
Using Eqgs. (2.5) and (2.6), for U and U to an accuracy of terms of the order of r; we find
dU dp __ 3lry 3
E‘;~4ﬂU1E‘2ﬁ<fz>>0’ (3-4)

i.e., the first bracket in Eq. (3.3) is always positive (consideration of the next terms of the expansion
shows that the quantity (dU/dry) —4~Uy(dp/dr,) is positive for pressure drops permitted by the equilibrium
equation |Ap/p|21/8). Thus, in the axially symmetrical system the magnetic depression (dU /dr;<0) cre~
ated as a result of the pressure gradient does not stabilize flute perturbations.

Allowing for condition (3.4), the stability criterion (3.3) takes the form
ypg—on—+ U:—r’:>0. (3.5)
Substituting the values of all the quantities found in 2, we obtain

—1

—a< 3 (D + D)

or, to the same accuracy,

dlnp _3<f% _2 2 -1
~d1nro< Bo "o (<js>+ 7Bo <f>) ? (3.6)

where By=87py< By
In the case of large B criterion (3.5) reduces to the condition dU/dr;> 0

_dlap 3¢ T
dinry > 35 By (3.7

If the magnetic stopper (mirror) ratio Ris suchthat R—1~1, we have (f%~1/%, and the criterion
of convective stability for a dense plasma (8 1) takes the form

where A is a coefficient of the order of unity.

4. Instability of Long-Wave Perturbations.

Stabilization by the Ends

As already indicated in § 3, in the system under consideration the azimuthally small-scale oscil~
lations with a potential energy W, are the most dangerous — see Eq. (3.2). In order to find the dispersion
relations we turn to the equations. of motion, which for these oscillations reduce to the form

_ B3 j 1 g3 o ok, . oh, } sayp N dp L
O =T T (775 %05 ) — 2B 155 [?p(dl‘ 8+ 295m Es) (1 + ) + 5 ;“}
a . ah_: vy Y1
— %k :Tas-[vp<d1v§| +2m§37(1+ I";\ZF) ] 4.1

Let us take the divergence of both sides of the second equation {div £y =(B/hg) - (8/8s)(¢ "/ B)] and
instead of the function div 5" introduce the new unknown

2 2
47p By By B, 9a 8 (B a
e z sl Y
® BOZ {(!mvp + B Y + 2rB2 a9z £ =B 0z (Bzz 0z )’
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In addition to this, we transform from the variables &, s to the variables r;, z and make use of Eq. (2.3).
The equations of motion (4.1) then take the form

1
y= ‘o (dwg. + 2905 g)( 4 i)™, (4.2)
4stp r*B*B, 45 [ B, ats] Zm dp
—0se V=g e + 2By + 5o B Todrs & ) (4.3)

This is a system of equations for y and £° with coefficients periodic in z. The solution may therefore be
sought in the form

E=A(rg)Bov(re, 2)e™?, y=A(ro)ulro, z)ethz,
where u and v are periodic functions of z with a period I. The system (4.2), (4.3) is solved by expanding
all the quantities in powers of ry (we confine ourselves to terms of the second order).

Comparison of the positive second and destabilizing third terms in Eq. (3.2) for the potential energy
shows that the wave number is a quantity of no lower than the first order in rj, while the term of zero or-
der in the expansion of the function v is independent of z (oscillations for which 3 is almost constant along
the line of force are, of course, chosen). Furthermore, if in (4.3) we compare the left-hand side and the
last term on the right-hand side, we see that the square of the frequency «? is a quantity of the second or-
der of smallness in rg.

Thus, the expansions of the functions v and u take the form
v=1-tv;+v,-+- ..., u=ugtu,tu, ...

In Eq. (4.2) the terms of zero order yield the followmg (all the quantities characterizing the magnetic field
were found in § 2):
d dugy _
()=

and it follows from the condition of periodicity uy({uy)=0) that uy=const. The terms of first order in r,

take the form
%[f(ikuo + %)] = 0.

Once again, because of the periodicity of u;, we find

)

In an analogous way the periodicity of the function u, enables us to find

2 s k2 -1
“°=%7m’?<2>[c_4 SH T ] .

AN
where cp%=Bg/4rp.

In Eq. (4.3) the terms of first order give vy =const, and the terms of second order take the form

Ty dz2)+iv—dzz (V) ( + a).

A

Substituting the uy of (4.4) in this equation, multlplymg both sides by f2, and averagmg with respect to z,
we obtain a dispersion equation for the natural oscillations:

2 —_ 2 3
1~(k+ <f/aro)( f1><f>L \f Yﬁof/ +/1\
. N f /
For k=0 the condition w?> 0 coincides with condition (3.7) for the stability of the flute perturbations.

Equation (4.5) is quadratie in the quantity w?/c% and has two positive roots subject to the condition
q A

]—1, (4.5)

dl
- <f2>ﬁod1§f <R
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Thus, if the pressure increases toward the outside, the plasma is stable.
If, however, the pressure falls toward the periphery, then for

dl
k2 <k —_——— <f2> 50d1§f0 (4.8

one of the roots of Eq. (4.5) is negative, which implies instability.

In a system bounded by conducting ends, in view of the boundary condition at the ends, the values of
the wave numbers are limited from below by the quantity Kmin® 7/NI. Hence, on satisfying the condition

_ _"<fz>ﬁ°dlllxllf <( )2 4.7

the system will be stable (stabilizing effect of the conducting ends, see [4]).

If the plasma is stable in relation to flute perturbations, i.e., if inequality (3.6) is satisfied, the con-
dition for stabilization by the ends takes the form
N2 b for B,
<Ry I To

NG —2 L L s pet,
- V¥Bo Iro < /2> VB ™o P

Let us now consider the case in which the pressure falls more sharply than in (3.6). The maximum change
of pressure in the case of large 8 |Ap/p| 21/8, while in the case of small 8 |Ap/p|< 1.

Condition (4.7) then takes the form
n

- ~1 for >1,
l </‘z>1/2 p

1
—*———“—‘—- for <i.
32 (Bo <12) " ¥V Be P<

Since for the longitudinal containment of the plasma a large number of mirrors (magnetic plasma-
containing segments) is required [1, 2}, in high-pressure plasma (8 1) there is no stabilization by the
ends.

N %

N

The "frozen" nature of the lines of force at the conducting ends is the only stabilizing effect. If con-
dition (4.7) is not satisfied, the plasma in the corrugated field is always unstable for a falling pressure.
The instability increment vanishes when k =k, (4.6) and if the flute perturbations are stable (3.6), when
k=0.

Analysis of the dispersion equation (4.5) shows that on satisfying the condition

dlin P 2 / 3 2 \_i f2 9 _1_ ~ /48 -1 : .
—RE < O (Pl Y [t+ame(l 7 P+ PR (4.8)
coinciding in order of magnitude with condition (3.7), the maximum increment is reached for a Kextp in the
interval 0 <kgyt,.<kg (the exact expression for Kex4y is rather cumbersome). The maximum increment for

B> 1 equals

l Ca r
=L (4.9)

If the pressure falls more sharply than in (4.8), the maximum increment is that of flute oscillations
with k=0 (or for a finite system, with kp;,~ 7/ NJ):
3z ¢j2y | |12
— .

If the pressure gradient is much greater than the critical (4.8), the maximum increment equals

312 ¢f2 1
vk =0, 5>1)=TTA{ </<2!;> (f’"}szfo

dln p
d1ln ry

)1,'2 cy {4.10)
T

c
vzl—“(ﬁ
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5. Consideration of the Effect of Viscous Frictional

Forces on the Oscillations of High-Pressure Plasma (8 » 1)

Regarding the plasma as magnetized, in the equation of motion we consider only the longitudinal ionic
viscosity. Then the equation of the oscillations (1.1) takes the form

— %k, 'f — (KE)a. (5.1)

where the viscous tension tensor equals [6] z.p = 3iey, (hahg — 1/3 _6@) (h (hy) & — 1/3 div §) . Hereh is the

unit vector in the direction of the magnetic field; n,=p/y; is the viscosity of the ions; »j is the ionic fre-
guency of Coulomb collisions.

Let us further assume that the inertial terms may be neglected by comparison with the viscous terms.
This is valid on the condition that

fvel < lvil,
where y; is the instability increment for an ideal plasma, and v, is the increment calculated while neglect-
ing the inertial terms.

After multiplying both sides of Eq. (5.1) in the scalar manner by ¢ and integrating over the volume,
we obtain

A dg oh, AL
-}im} o (h_(fs"+ k‘;@g?'—-%dlv §) av =W, (5.2)
where W is the potential energy of the oscillations as in (1.3). It follows from (5.2) that all conclusions
regarding stability drawn earlier remain valid on making allowance for viscosity. If there is any substan-
tial viscous friction, this only results in a reduced instability increment.

As in the case of ideal plasma, the maximum increment occurs for oscillations with a large azimuthal
number m— «. In the limit of large B these are incompressible (divt =0). Equation (5.2) then takes the
form

3 a8 oh 2 hdsd® .
T”wj““(has’*'ha 8|~ —=W (5.3)

W, being given in Eq. (3.2), while the equations for the oscillations may be written in the following way:

B a1 /]9 oh, N1 o 20k, oo
Siome 7 55 ['E( s T 65 || = was | | 1VEN T aget (5.4)
oh, a‘é” 8k - B 4 (1 o B2 . ok 3 gﬁ_ oh, 3
Olmn"ha(l’<hsés + 5755 :—E—m(ﬂ_g T as) + | divE + 25558 |+ 235 70 °

(here we have remembered the condition 8> 1).

Once again we seek a solution in the class of perturbations such that the quantity 53 is almost con-
stant along the line of force, .

£ = A(ro)Beei (1 + vy +vp + .0
It follows from Eq. (5.3) that the increment y=—~iwis a quantity of the second or zeroth order in r,.
In the first case the expansion of 5" starts with the minus-first order in ry,
By =A(ry) e (E_1+ & + ...)-

The dispersion equation is obtained from Eqs. (5.4) in the same way as that illustrated in § 4:

=P o (RO R AR - k[ o i (e PR - (6:5)

" If the flute-perturbation stability criterion (3.6) is satisfied, the increment (5.5) is positive in the
wave-number range
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and reaches a maximum

< (5.6)

Comparison between the "viscous" increment (5.6) and the increment (4.9) for an ideal plasma shows
that the viscosity is important if

1<VBL (5.7)

where A is the free range of the particles.
If condition (3.6) is not satisfied, it follows from (5.5) that instability will develop for wave numbers

3 dln 3y
T<f2>(_6dlufo— <fs>0) <k <k

However, close to k; Eq. (5.5) is inapplicable (the denominator vanishes). Successive allowance for the
next terms of the expansion in Eqgs. (5.4) shows that for k=k; the increment vanishes, while close to k;
there is a sharp maximum

Vs
Y~ —B— kll.
For large pressure gradients
v; dlnp 12 v;
v~ (me]) <5

Liet us now consider the case in which the increment y is a quantity of zero order in r;. The expan-
sion of gn then starts from the zero order,

Ey = A("o)eikZ (& + §1+~--)-

The system of equations (5.4) may then be reduced to the following form (only the principal terms being
left intact):

%%ﬁ '%— [ﬂ;o—ﬂ/ 5 (! ’)} “'}[;s = (F80)— 3, dzz =) } (5.8)

3 i fsol‘3 2 dz2 (fl/Z) [go e 5% (f”z)] = _r%)i (—k+ Uz) +

[ o2 0 [ 1 ) 2 .
+ 12 2 (1) {f—ozjl‘; Bt | R — 2f‘/23‘{f—2(ﬂ-2>]}.

The system (5.8) can only be solved if we further assume that R—~1is small (condition of weak cor-
rugation). The dispersion equation takes the form

2 1 3 dlnp 9 2 (5.9)
TR 2 (2 [ b — e — ],
dzt | /
The increment (5.9) is positive for the wave numbers

K<<k,

and only on the condition that the flute perturbations are unstable (k=0). These do not possess the maxi~
mum increment.

For large pressure gradients greatly exceeding the value (3.7) the instability increment equals

l2

Vs 12
Y~Vi—g
. To

gﬂ*'—‘

Tmax

dlnp
din ry

(5.10)

Comparison of the increment (5.10) with the analogous expression (4.10) for the ideal plasma shows that
in this case the viscosity is important if-
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2
AMnax

1 < VE 13 . (5 .11)

Thus, in a high-pressure plasma (8> 1) viscosity may play a significant part. It follows from the
conditions (5.7) and (5.11) that at the boundaries of applicability of our present approximation (ryax ~1)
and the hydrodynamic approximation (A ~1) the effects of viscous friction lead to a reduction in the insta-
bility increment by a factor of B~ VB times as compared with the case of an ideal plasma.

A comparison between the characteristic time of instability development A /fy (A is the Coulomb log-
arithm) and the time of longitudinal plasma expansion [1, 2} ) ~N2/Vi shows that subject to the condition
B>NZ/A the time of plasma containment is determined by the latter and not the former.

In conclusion, the author wishes to thank D. D. Ryutov for presenting the problem and for constant
interest in the work, and V. D. Shafranov for useful discussions and a number of valuable comments.
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